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Abstract

This paper presents a novel nodal finite element method for either continuous and
discontinuous elements, as applied to the 2-D shallow-water equations on the cubed-
sphere. The cornerstone of this method is the construction of a robust derivative oper-
ator which can be applied to compute discrete derivatives even over a discontinuous5

function space. A key advantage of the robust derivative is that it can be applied to
partial differential equations in either conservative or non-conservative form. However,
it is also shown that discontinuous penalization is required to recover the correct order
of accuracy for discontinuous elements. Two versions with discontinuous elements are
examined, using either the g1 and g2 flux correction function for distribution of bound-10

ary fluxes and penalty across nodal points. Scalar and vector hyperviscosity operators
valid for both continuous and discontinuous elements are also derived for stabiliza-
tion and removal of grid-scale noise. This method is validated using three standard
shallow-water test cases, including geostrophically balanced flow, a mountain-induced
Rossby wave train and a barotropic instability. The results show that although the dis-15

continuous basis requires a smaller time step size than that required for continuous
elements, the method exhibits better stability and accuracy properties in the absence
of hyperviscosity.

1 Introduction

Modeling of the 2-D shallow-water equations is an important first step in understand-20

ing the behavior of a numerical discretization for atmospheric models. In particular,
the global shallow-water equations are governed by features common with atmo-
spheric motions including barotropic Rossby waves and inertia-gravity waves, without
the added complexity of a vertical dimension.

A comprehensive literature already exists on the development of numerical meth-25

ods for the global shallow-water equations spanning the past several decades.
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Examples include the spectral transform method (Jakob-Chien et al., 1995), semi-
Lagrangian methods (Ritchie, 1988; Bates et al., 1990; Tolstykh, 2002; Zerroukat et al.,
2009; Tolstykh and Shashkin, 2012; Qaddouri et al., 2012), finite-difference methods
(Heikes and Randall, 1995; Ronchi et al., 1996), Godunov-type finite-volume meth-
ods (Rossmanith, 2006; Ullrich et al., 2010), staggered finite-volume methods (Lin5

and Rood, 1997; Ringler et al., 2008; Ringler et al., 2011), multi-moment finite-volume
methods (Chen and Xiao, 2008; Li et al., 2008; Chen et al., 2013), and finite-element
methods (Taylor et al., 1997; Côté and Staniforth, 1990; Thomas and Loft, 2005;
Giraldo et al., 2002; Nair et al., 2005; Läuter et al., 2008; Comblen et al., 2009; Bao
et al., 2013).10

This paper introduces a novel unified formulation for discretizing either conservative
or non-conservative formulations of the shallow-water equations on a manifold using
continuous and discontinuous finite elements. This work is motivated by the flux cor-
rection methods of Huynh (2007) and Vincent et al. (2011), is an alternative to formu-
lations with discontinuous elements that rely on the conservative form of the equations15

of motion with explicit momentum fluxes (Giraldo et al., 2002; Nair et al., 2005), and
generalizes both spectral element and discontinuous Galerkin discretizations. This ap-
proach is also quadrature-free, requiring no integral computation. Further, this paper
introduces a general variational discretization of the scalar and vector Laplacian opera-
tor which is valid for either choice of elements and only requires one communication per20

application of the Laplacian. The discontinuous discretization presented in this paper
reduces to a traditional discontinuous Galerkin scheme if applied to the conservative
form of the shallow-water equations.

There are several reasons why discontinuous elements are potentially more desir-
able than continuous elements: first, discontinuous elements only require parallel com-25

munication along coordinate axes, whereas continuous elements also require parallel
communication along diagonals, a doubling of the total number of communications in 2-
D. This reduced communication requirement implies better overall scalability on large-
scale parallel systems. Second, discontinuous elements provide a natural mechanism
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to enforce stabilization via discontinuous penalization (or Riemann solvers, for equa-
tions in conservation form). Third, discontinuous elements can be used in conjunction
with upwind methods, which are generally better for tracer transport and associated
problems. However, discontinuous elements also have a number of disadvantages, in-
cluding higher storage requirements (for the same order of accuracy), a maximum time5

step size which is typically smaller than that imposed for continuous elements (Ullrich,
2013), and added computational expense for many hyperbolic operations. Nonethe-
less, it is worthwhile to explore the differences between these two formulations for
a real global modeling system.

The outline of this paper is as follows. Section 2 presents the shallow-water equa-10

tions on a manifold. The cubed-sphere grid, which will be used for simulations on the
sphere, is described in Sect. 3. The discretization of the dynamics and hyperviscosity
are then presented in Sects. 4 and 5 respectively. Results from three standard shallow-
water test cases are shown in Sect. 6 and conclusions given in Sect. 7.

2 The shallow-water equations on a manifold15

The 2-D shallow-water equations in on a Riemannian manifold with coordinate indices
xs = {α,β} can be written as

∂uα

∂t
+us∇suα +gαs

∂
∂xs

(gcH)+ f (k ×u)α = 0, (1)

∂uβ

∂t
+us∇suβ +gβs

∂
∂xs

(gcH)+ f (k ×u)β = 0, (2)

∂H
∂t

+∇s(hus) = 0. (3)20

The prognostic variables are free surface height H and vector velocity u = uαgα+u
β
gβ,

where gα = ∂x/∂α and gβ = ∂x/∂β are the natural basis vectors on the manifold. Two
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other important quantities are the fluid height h and height of the bottom topography
z, which are related to the free surface height via H = h+ z. Here grs denotes the
contravariant metric with covariant inverse grs, J =

√
detgrs is the metric Jacobian, gc

is gravity, f is the Coriolis parameter, and k is the vertical basis vector of unit length.
Einstein summation notation (implied summation) is used for repeated indices. These5

equations further make use of the covariant derivative ∇s, which expands as

us∇sud = uα
∂ud

∂α
+uβ

∂ud

∂β
+Γdsru

sur , (4)

∇s(hus) =
1
J
∂
∂α

(Jhuα)+
1
J
∂
∂β

(Jhuβ), (5)

where Γdsr denotes the Christoffel symbols of the second kind associated with the co-10

ordinate transform (again with summation over repeated indices s and r implied).
Observe that Eqs. (1)–(2) are given in a non-conservative form; this formulation is se-

lected over the conservative formulation (where huα and huβ are prognostic variables)
since it can more readily conserve quantities more relevant to atmospheric motion,
such as angular momentum and potential enstrophy (Thuburn, 2008), and (depend-15

ing on the discretization) can lead to a more accurate treatment of wave-like motions
(Thuburn and Woollings, 2005). The mass Eq. (3) has been kept in conservative form
to enforce strict mass conservation.

3 The cubed-sphere grid

The Eqs. (1)–(3) are now applied to a particular choice of coordinate system. The20

cubed-sphere grid (Sadourny, 1972; Ronchi et al., 1996) consists of a cube with six
Cartesian patches arranged along each face, which is then inflated onto a tangent
spherical shell, as shown in Fig. 1. The cubed-sphere is a quasi-uniform spherical grid,
that is, it is in the class of grids that provide an approximately uniform tiling of the sphere
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(see Staniforth and Thuburn (2012), for example, for a review of different options for
global grids). On the equiangular cubed-sphere grid, coordinates are given as (α,β,p),
with central angles α,β ∈ [−π

4 , π4 ] and panel index p ∈ {1,2,3,4,5,6}. By convention,
we choose panels 1–4 to be along the equator and panels 5 and 6 to be centered on
the northern and southern pole, respectively. With uniform grid spacing, each panel5

consists of a square array of ne ×ne elements.
The contravariant 2-D metric on the equiangular cubed-sphere of radius a is given

by

grs =
δ2

a2(1+ tan2α)(1+ tan2β)

(
1+ tan2β tanα tanβ
tanα tanβ 1+ tan2α

)
, (6)

10

where δ =
√

1+ tan2α+ tan2β. The Jacobian on the manifold, denoted by J , is then

J =
√

det(grs) =
a2(1+ tan2α)(1+ tan2β)

δ3
, (7)

and induces the infinitesimal area element dA = J dαdβ. The Christoffel symbols of the
second kind are given by15

Γαij =

 2tanα tan2β
δ2

− tanβ (1+tan2β)
δ2

− tanβ (1+tan2β)
δ2 0

 , (8)

Γβij =

 0 − tanα (1+tan2α)
δ2

− tanα (1+tan2α)
δ2

2tan2α tanβ
δ2

 . (9)

Spherical coordinates (λ,φ) for longitude λ ∈ [0,2π] and latitude φ ∈ [−π
2 , π2 ] will also

be used for plotting and specification of tests. Coordinate transforms between spher-20

ical and equiangular coordinates can be found in Ullrich and Jablonowski (2012) Ap-
pendix A.
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4 Nodal finite element discretization

4.1 The nodal basis

A nodal finite element method is employed (Taylor et al., 1997; Giraldo et al., 2002;
Hesthaven and Warburton, 2007). The 1-D reference element is defined as the interval
x ∈ [−1,1] along with a set of test functions φ̂(i )(x). The test functions are defined such5

that test function φ̂(i )(x) is the unique polynomial of degree np −1 that is 1 at the i th
Gauss–Lobatto–Legendre (GLL) node (i ∈ (0, . . . ,np−1)) and 0 at all other GLL nodes.
Each basis polynomial then has a corresponding weight, defined by

wi =

1∫
−1

φ̂(i )(x)dx. (10)

10

The 2-D element Z = [α0,αnp−1]× [β0,βnp−1] (with boundary ∂Z) has accompanying
1-D basis functions

φ̃(i )(α) = φ̂(i )

(
2(α−α0)

∆α
−1
)

, φ̃(j )(β) = φ̂(j )

(
2(β−β0)

∆β
−1
)

, (11)

where ∆α = αnp−1 −α0 and ∆β = βnp−1 −β0. The accompanying 2-D tensor-product15

basis is then defined by

φ(i ,j )(α,β) = φ̃(i )(α)φ̃(j )(β). (12)

Figure 2 provides a depiction of GLL nodes within a single element. For vector quan-
tities (such as velocity u), test functions are instead vector fields. Uniqueness of the20

variational system is retained if exactly two degrees of freedom are allowed at each
nodal location for the vector test function φ. As we shall see, the most natural choice
is test functions φ

(α)
(i ,j ) and φ

(β)
(i ,j ) with covariant components

φ
(α)
(i ,j )α =φ(i ,j ), φ

(α)
(i ,j )β = 0, φ

(β)
(i ,j )α = 0, φ

(β)
(i ,j )β =φ(i ,j ). (13)

25

5147

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/5141/2014/gmdd-7-5141-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/5141/2014/gmdd-7-5141-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 5141–5182, 2014

A global
finite-element

shallow-water model

P. A. Ullrich

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4.2 Robust differentiation

A robust differentiation operator is now constructed for both continuous and discontinu-
ous finite elements. Let f : (α,β) →R be defined and continuous on Z ∪∂Z with basis
φ(i ,j ),

f (α,β) =
np−1∑
p=0

np−1∑
q=0

f(p,q)φ(p,q)(α,β), (14)5

with coefficients f(p,q) ∈R. Further, let f̃ : (α,β) →R be defined and continuous on ∂Z.
Here f̃ represents the evaluation of f in neighboring elements. Note that for a contin-
uous finite element method, f and f̃ must satisfy f̃ (α,β) = f (α,β) on ∂Z, whereas no
such restriction is imposed for discontinuous finite elements. Following Huynh (2007),10

robust differentiation in the α direction is defined at GLL nodes via

Dαf (αi ,βj ) =
np−1∑
p=0

f(p,j )

∂φ̃(p)

∂α
(αi )+

dgR
dα

(αi )(f (np−1,j ) − f(np−1,j ))+
dgL
dα

(αi )(f (0,j ) − f(0,j )), (15)

where the overline denotes the co-located average of f and f̃ ,15

f (np−1,j ) =
f (αnp−1,βj )+ f̃ (αnp−1,βj )

2
, f (0,j ) =

f (α0,βj )+ f̃ (α0,βj )

2
. (16)

Here gL and gR are the local flux correction functions, which satisfy

gL(α0) = 1, gL(αnp−1) = 0, gR(α0) = 0, gR(αnp−1) = 1, (17)
20

and otherwise are chosen to approximate zero throughout [α0,αnp−1]. A number of
options for gL and gR exist, including g1 (Radau polynomials), which will lead to the
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discontinuous Galerkin method, and g2, which will lead to the mass-lumped discon-
tinuous Galerkin method (Huynh, 2007). Hereafter discontinuous elements with the g1
flux correction function will be referred to as “discontinuous g1 elements”, whereas el-
ements using of the g2 flux correction function will be referred to as “discontinuous g2
elements”. An analogous procedure is used to construct a derivative operator in the β5

direction. Observe that for continuous finite elements, the rightmost terms in Eq. (15)
are exactly zero.

With the definition of a robust discrete derivative in Eq. (15), discretization of the
shallow-water system Eqs. (1)–(3) is straightforward. Note that for continuous finite
elements, this discretization is identical to the approach of Taylor et al. (1997) when10

applied in conjunction with Direct Stiffness Summation (that is, projection into the space
of continuous functions). If the conservative form of the shallow-water equations were
employed, this discretization would be the same as Giraldo et al. (2002) when mass
lumping is not employed (discontinuous g1) and Nair et al. (2005) if mass lumping is
applied (discontinuous g2). To the best of the author’s knowledge, no previous work has15

used both discontinuous elements and a non-conservative form of the shallow-water
system.

4.3 Discontinuous penalization

At element boundaries, the use of one-sided derivatives will cause the discontinuity
between neighboring elements to exhibit an error with magnitude O(∆xnp−1), an ef-20

fective loss of one order of accuracy from the expected convergence rate. To reduce
errors associated with the discontinuity, a penalization term is added in each coordinate
direction. In the α direction this term reads

∂H
∂t

(αi ,βj ) = . . .+
∂gR
∂α

(αi )
|λ(αnp−1,βj )|

2

[
H̃(αnp−1,βj )−H(αnp−1,βj )

] J(αnp−1,βj )

J(αi ,βj )

+
∂gL
∂α

(αi )
|λ(α0,βj )|

2

[
H(α0,βj )− H̃(α0,βj )

] J(α0,βj )

J(αi ,βj )
, (18)25
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∂ud

∂t
(αi ,βj ) = . . .+

∂gR
∂α

(αi )
|λ(αnp−1,βj )|

2

[
ũd (αnp−1,βj )−ud (αnp−1,βj )

]
+
∂gL
∂α

(αi )
|λ(α0,βj )|

2

[
ud (α0,βj )− ũd (α0,βj )

]
. (19)

where λ(α,β) = |uα |+
√
gch/a represents the maximum local wave speed in the α

direction. An analogous term is added in the β direction. Note that with this choice5

of penalization the evolution equation for h is identical to the evolution equation that
would arise from a traditional conservative discontinuous Galerkin method with local
Lax–Friedrichs flux. Since the penalization term is equivalent to upwinding, it is weakly
diffusive and so allows the discontinuous scheme to maintain stability even in the ab-
sence of explicit viscosity.10

5 Viscosity and hyperviscosity

A stabilization operator is necessary for finite element methods to avoid dispersive
errors associated with spectral ringing. In general, it is preferred that this operator is
consistent with the underlying geometry of the Riemannian manifold, which precludes,
for example, the Boyd–Vandeven filter (Boyd, 1996). There has been considerable suc-15

cess with the use of hyperviscosity in the spectral element method (Dennis et al., 2011),
which maintains geometric consistency by mimicking the natural fourth-order hypervis-
cosity operator. Previously, it has not been clear how to extend this operator to a dis-
continuous function space. However, the robust derivative Eq. (15) provides a direct
mechanism by which the hyperviscosity operator can be constructed. The viscosity20

operator for both the continuous and discontinuous function space will be discussed
here.

Note that any viscosity operator will lead to a loss of energy conservation of the
underlying numerical method. This loss is exhibited in two obvious ways: first, for
geostrophically balanced flows the error will tend to grow over time. Second, energy25

5150

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/5141/2014/gmdd-7-5141-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/5141/2014/gmdd-7-5141-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 5141–5182, 2014

A global
finite-element

shallow-water model

P. A. Ullrich

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

conservation is lost leading to a decay in the total energy content of the system over
time.

5.1 Scalar viscosity

A scalar viscosity operator is constructed to satisfy

H(ν)ψ ≈ ν∇2ψ , (20)5

where ∇2 = ∇ ·∇ is the usual scalar Laplacian. The operator is defined implicitly via
a variational construction. If f =H(ν)ψ then, multiplying Eq. (20) by a test function and
applying integration by parts, one obtains∫ ∫
fφ(i ,j )dA = ν

 ∮
∂Z

φ(i ,j )∇ψ ·dS−
∫ ∫
Z

∇φ(i ,j ) · ∇ψdA

 , (21)10

where dS is the infinitesimal line element along the boundary of Z and dA is the in-
finitesimal area element. The two terms on the right-hand side of this expression corre-
spond to the viscosity flux through element boundaries and the Laplacian within the el-
ement. Under a continuous element formulation, only the rightmost term is retained and15

fluxes are instead accounted for via Direct Stiffness Summation (DSS). Under a dis-
continuous formulation, both terms are retained and discretized. The discrete equation
satisfied by f(i ,j ) that follows from Eq. (21) is written as

f(i ,j ) = f
B
(i ,j ) + f

A
(i ,j ), (22)

20

where f B
(i ,j ) denotes the discretization of the boundary integral and f A

(i ,j ) denotes the
discretization of the area integral. After a lengthy derivation (see Appendix), these dis-
cretizations read

f A
(i ,j ) =− ν

wiJ(αi ,βj )

np−1∑
m=0

∂φ̃(i )

∂α
∇αψJwm|α=αm,β=βj
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− ν
wjJ(αi ,βj )

np−1∑
n=0

∂φ̃(j )

∂β
∇βψJwn

∣∣
α=αi ,β=βn

, (23)

and

f B
(i ,j ) = ν


δi ,np−1

wi∆α
∇αψ︸ ︷︷ ︸

Right

+
δj ,np−1

wj∆β
∇βψ︸ ︷︷ ︸

Top

−
δi ,0
wi∆α

∇αψ︸ ︷︷ ︸
Left

−
δj ,0
wj∆β

∇βψ︸ ︷︷ ︸
Bottom

 , (24)

5

where δi ,j is the Krönecker delta. Here the contravariant derivative of ψ has been used,
defined via

∇pψ = gpq∇qψ = gpα
∂ψ
∂α

+gpβ
∂ψ
∂β

. (25)

Note that the contravariant derivatives ∇pψ are multivalued along this edge, and so10

must be adjusted using the robust derivative operator Eq. (15).

5.2 Vector viscosity

Vector viscosity is used for damping of the velocity field, and takes the form

H(νd ,νv )u ≈ νd∇(∇ ·u)− νv∇× (∇×u). (26)
15

Observe that if ν = νd = νv then this expression is exactly the standard vector Lapla-
cian operator ∇2

u, with coefficient ν. By writing the vector Laplacian as Eq. (26), the
combined operator separates into two distinct operators that effect divergence damp-
ing (with coefficient νd ) and vorticity damping (with coefficient νv ). This result can be
quickly verified by taking the divergence and curl of Eq. (26),20

∇ ·H(νd ,νv )u = νd∇2(∇ ·u), (27)
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∇×H(νd ,νv )u = −νv∇× (∇× (∇×u)) = νv∇2(∇×u) (28)

For simplicity of calculation, we treat divergence damping and vorticity damping sep-
arately. For divergence damping, the operator is constructed by taking the inner product
of f =H(νd ,νv )u with the vector test function φ, integrating over Z and applying inte-5

gration by parts,

νd

∫ ∫
Z

φ · fdA = νd

∫ ∫
Z

φ · ∇(∇ ·u),

= νd

 ∮
∂Z

(∇ ·u)φ ·dS−
∫ ∫
Z

(∇ ·φ)(∇ ·u)dV

 . (29)

For vorticity damping an analogous procedure leads to10

νv

∫ ∫
Z

φ · fdA = −νv
∫ ∫
Z

φ · ∇× (∇×u)dV ,

= −νv

 ∮
∂Z

(∇×u)×φ ·dS+
∫ ∫
Z

(∇×φ) · (∇×u)dV

 (30)

Note that for shallow-water flows, only the radial component of the vorticity is relevant
for this calculation. The discrete value of f α(i ,j ) and f β(i ,j ) that arises from this calculation15

then has contributions from the area integral via f A,d
(i ,j ) and boundary integral via f B,d

(i ,j ) ,

f α(i ,j ) = f
B,α
(i ,j ) + f

A,α
(i ,j ) , f β(i ,j ) = f

B,β
(i ,j ) + f

A,β
(i ,j ) . (31)

Following another lengthy derivation (see Appendix) the area integral term appears as

f A,α
(i ,j ) =−

νd
J(αi ,βj )wi

np−1∑
m=0

Jgαα
dφ̃(i )

dα
(∇ ·u)wm

∣∣∣∣∣
α=αm,β=βj

20
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−
νd

J(αi ,βj )wj

np−1∑
n=0

Jgβα
dφ̃(j )

dβ
(∇ ·u)wn

∣∣∣∣∣
α=αi ,β=βn

+
νv

J(αi ,βj )wj

np−1∑
n=0

dφ̃(j )

dβ
(∇×u)rwn

∣∣∣∣∣
α=αi ,β=βn

, (32)

and

f A,β
(i ,j ) =−

νd
J(αi ,βj )wi

np−1∑
m=0

Jgαβ
dφ̃(i )

dα
(∇ ·u)wm

∣∣∣∣∣
α=αm,β=βj

5

−
νd

J(αi ,βj )wj

np−1∑
n=0

Jgββ
dφ̃(j )

dβ
(∇ ·u)wn

∣∣∣∣∣
α=αi ,β=βn

−
νv

J(αi ,βj )wi

np−1∑
m=0

dφ̃(i )

dα
(∇×u)rwm

∣∣∣∣∣
α=αm,β=βj

. (33)

Whereas the boundary integral term appear as

f B,α
(i ,j ) = νd


δi ,np−1g

αα(∇ ·u)

wi∆α︸ ︷︷ ︸
Right

+
δj ,np−1g

αβ(∇ ·u)

wj∆β︸ ︷︷ ︸
Top

−
δi ,0g

αα(∇ ·u)

wi∆α︸ ︷︷ ︸
Left

−
δj ,0g

αβ(∇ ·u)

wj∆β︸ ︷︷ ︸
Bottom


α=αi ,β=βj

10

+ νv

−
δj ,np−1(∇×u)r

Jwj∆β︸ ︷︷ ︸
Top

+
δj ,0(∇×u)r
Jwj∆β︸ ︷︷ ︸

Bottom


α=αi ,β=βj

, (34)
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and

f B,β
(i ,j ) = νd


δi ,np−1g

βα(∇ ·u)

wi∆α︸ ︷︷ ︸
Right

+
δj ,np−1g

ββ(∇ ·u)

wj∆β︸ ︷︷ ︸
Top

−
δi ,0g

βα(∇ ·u)

wi∆α︸ ︷︷ ︸
Left

−
δj ,0g

ββ(∇ ·u)

wj∆β︸ ︷︷ ︸
Bottom


α=αi ,β=βj

+ νv

δi ,np−1(∇×u)r

Jwi∆α︸ ︷︷ ︸
Right

−
δi ,0(∇×u)r
Jwi∆α︸ ︷︷ ︸

Left


α=αi ,β=βj

. (35)

5

The divergence and curl, which are needed for evaluation of the Laplacian, are com-
puted via

∇ ·u = ∇pup = ∇αuα +∇βuβ (36)

(∇×u)r = εrpqg
ps∇suq = J

[
gαα∇αuβ +gαβ∇βuβ −gβα∇αuα −gββ∇βuα

]
, (37)

10

where

∇αuα =
∂uα

∂α
+Γαααu

α +Γααβu
β, ∇αuβ =

∂uβ

∂α
+Γβααu

α +Γβαβu
β, (38)

∇βuα =
∂uα

∂β
+Γαβαu

α +Γαββu
β, ∇βuβ =

∂uβ

∂β
+Γββαu

α +Γβββu
β. (39)

All partial derivatives are evaluated using the robust derivative operator Eq. (15).15
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5.3 Hyperviscosity

For stabilization of a high-order discretization, hyperviscosity is preferred since it re-
tains the order of accuracy of the underlying scheme. In practice, hyperviscosity is
implemented by repeated application of the viscosity operator. For instance, for fourth-
order hyperviscosity, the ∇4 operator is approximated as follows5

∂u
∂t

=H(νd ,νv )H(1,1)u,
∂h
∂t

=H(ν)H(1)h. (40)

5.4 Computational considerations

Calculation of hyperviscosity in the form presented here requires one parallel exchange
per application of the Laplacian operator. For continuous elements, this communication10

is manifested through the application of DSS, which averages away any discontinuity
that has been generated along element edges. For discontinuous elements, scalar
viscosity requires pointwise updates along element edges computed from Eq. (24),
whereas vector viscosity requires both one-sided values of u, (∇·u) and (∇×u)r , which
are in turn used for computing nodal values of (∇·u) and (∇×u)r needed for Eqs. (32)–15

(35). This constitutes a doubling of the overall bandwidth requirement relative to con-
tinuous elements.

6 Results

In this section selected results are provided to evaluate the relative performance of the
methods described in this paper. Three test cases are evaluated: from the Williamson20

et al. (1992) test case suite, steady-state geostrophically balanced flow and zonal flow
over an isolated mountain will be analyzed, in addition to the barotropic instability test
of Galewsky et al. (2004). For all test cases, time integration is handled via the strong-
stability preserving three-stage third-order Runge–Kutta method (Gottlieb et al., 2001).
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Note that some improvement in the maximum time step size for discontinuous elements
can be obtained from the use of the five-stage third-order Runge–Kutta method (Ruuth,
2006), which has a stability region that covers a larger portion of the negative real
plane. The time step ∆t for each test is chosen to be close to the stability limit in each
case (observed empirically). The value of ∆t has negligible effect on the results (not5

shown), suggesting that spatial errors dominate in each case. Further, note that mass
conservation is maintained to machine truncation for all simulations (not shown). From
the shallow-water equations, the values of gc and f for the Earth are used,

gc = 9.80616m s−2, f = 2Ωsinφ, Ω= 7.29212×10−5 s−1. (41)
10

When required, the standard L2 error measure is calculated via

L2(h) =

√√√√√ I
[
(h−hT )2

]
I
[
h2
T

] , (42)

where hT is the height field at the initial time (which is the analytical solution for steady-
state test cases) and I denotes an approximation to the global integral, given by15

I [x] =
∑

all elements k

np−1∑
m=0

np−1∑
n=0

xk(αm,βn)Jk(αm,βn)wmwn∆α∆β

 , (43)

where the subscript k denotes the values of x and J within the kth element.
When applied, hyperviscosity make use of a single coefficient for both scalar and

vector hyperviscosity,20

ν = νd = νv = (1.0×1015 m4 s−1)
(
ne
30

)3.2

. (44)

This choice of scaling for the hyperviscosity coefficient is based on Takahashi et al.
(2006).
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6.1 Steady-state geostrophically balanced flow

Test case 2 of Williamson et al. (1992) simulates a zonally symmetric geostrophically
balanced flow. This test utilizes an unstable equilibrium solution to the shallow-water
equations which is expected to be exactly maintained over time. However, it is gen-
erally true that only methods that satisfy the curl-grad annihilator property ∇×∇φ = 05

maintain some sort of discrete equilibrium. Nonetheless, since an analytical solution
is known (identical to the initial conditions), this test is effective at measuring the con-
vergence rate of a numerical method. Further, the error fields from this test provide
some indication of what effect the grid has on the errors of the underlying method. The
analytical height field for this test is given by10

h = h0 −
1
gc

(
Ωu0a+

u2
0

2

)
sin2φ, (45)

with background height h0 and velocity amplitude u0 chosen to be

h0 =
2.94×104 m2 s−2

gc
, and u0 =

πa
6

day−1. (46)
15

This height field also serves as the reference solution. The non-divergent velocity field
is specified in latitude-longitude (φ,λ) coordinates as

uλ = u0 cosφ, uφ = 0. (47)

Figure 3 shows L2 errors in the height field after a 5 day integration of the model20

at ne = 4 resolution with np = 4. Simulations were completed for continuous elements
(a) with hyperviscosity and (d) without hyperviscosity, discontinuous elements (b, e)
with mass lumping (the g2 flux correction function), (c, f) without mass lumping (the
g1 flux correction function), (b, c) with discontinuous penalization, and (e, f) without
discontinuous penalization. The time step is ∆t = 2200s for simulations a, d, ∆t = 800s25
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for simulations b, c, e, and ∆t = 400s for simulation f. Increasing the magnitude of
the time step by 100s led to simulation instability in each case. Since the addition
of hyperviscosity leads to loss of energy conservation there is a slow decay of the
geostrophically balanced flow towards a uniform height state, hence leading to a nearly
zonally symmetric decay in the height field towards the poles. For all configurations5

(both continuous and discontinuous elements) visually identical results are observed
when hyperviscosity is added, and so these results are not shown. All simulations
exhibit a characteristic wavenumber-4 mode triggered by the underlying cubed-sphere,
although the specific error pattern differs throughout. Simulation d is exactly mimetic
and leads to exact maintenance of geostrophic balance. Simulations b and c are quasi-10

mimetic, only losing energy conservation due to the discontinuous penalty term, and
so exhibit very slow error growth with time. Simulations e and f, which correspond to
discontinuous elements without penalization, show greatly enhanced error norms and
substantial imprinting from the ne = 4 pattern.

To understand the growth of error norms associated with each configuration, addi-15

tional simulations with ne = 16 have been performed and L2 error norms plotted as
a function of time in Fig. 4. All simulations show an expected near-identical growth of
errors with time when hyperviscosity is active. With hyperviscosity disabled the results
from each simulation disentangle: continuous elements are oscillatory but show stable
error norms, discontinuous elements with penalization show smaller error norms than20

continuous elements but a very slow growth with time due to the upwinding effect of
the discontinuous penalization, and discontinuous elements without penalization show
rapid growth in errors (and eventual instability without mass lumping).

To verify that the model exhibits the correct convergence rate, Fig. 5 shows the global
error norms associated with simulations with ne ∈ {4,8,16,32,64} after a 5 day integra-25

tion period. At ne = 4, the time step is ∆t = 2200s for continuous elements, ∆t = 800s
for g2 discontinuous elements and g1 discontinuous elements with penalization, and
∆t = 400s for g1 discontinuous elements without penalization. The time step is scaled
inversely with increasing resolution. Missing simulations correspond to model instability
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and divergence prior to simulation completion. The use of hyperviscosity reduces the
convergence rate to O(∆x3.2), as expected from the choice of hyperviscosity coeffi-
cient in Eq. (44). With hyperviscosity disabled, model simulations converge at O(∆x4)
for continuous elements and discontinuous elements with penalty, and O(∆x3) for dis-
continuous elements without penalty. The loss of one order of accuracy is due to one-5

sided differentiation at co-located nodes along element edges, leading to enhancement
of the discontinuity. Similar results (not shown) are observed when changing np – that
is, continuous elements and discontinuous elements with penalty converge at O(∆xnp),
whereas unpenalized discontinuous elements converge at O(∆xnp−1).

6.2 Zonal flow over an isolated mountain10

Test case 5 in Williamson et al. (1992) considers zonal flow with underlying topography.
The wind and height fields are defined as in Sect. 6.1, except with h0 = 5960m and
u0 = 20m s−1. A conical mountain is used for the topographic forcing, given by

z = z0(1− r/R), (48)
15

with z0 = 2000m, R = π/9 and r2 = min
[
R2, (λ− λc)2 + (φ−φc)2

]
. The center of the

mountain is at λc = 3π/2 and φc = π/6.
Simulation results for this test case were computed at ne = 16 and np = 4 after 15

days of integration both with and without hyperviscosity. For discontinuous elements
penalization is always used. The time step used for these runs was ∆t = 480 s for20

continuous elements, ∆t = 240 s for g2 discontinuous elements and ∆t = 120 s for g1
discontinuous elements. These results are visually indistinguishable, so are instead
compared against the continuous element run (with HV) in Fig. 6, where the height
field H and height field difference H−Hc is plotted (where Hc is the height field given in
simulation a). Simulations b and c, corresponding to discontinuous elements with and25

without mass lumping, are very similar in structure and exhibit smooth differences from
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the continuous model. With no hyperviscosity applied, continuous elements (simula-
tion d) show significant noise which is not present for discontinuous elements (simula-
tions e, f). These simulations match closely with results from the literature (Nair et al.,
2005; Ullrich et al., 2010).

To understand conservation of invariants over time, total energy E and potential en-5

strophy ξ are computed over the duration of the simulation. Since these quantities are
invariant under the shallow-water equations, it would be expected that a perfect simu-
lation would conserve these quantities exactly. They are defined via

E =
1
2
hv · v +

1
2
gc(H2 − z2), and ξ =

(ζ + f )2

2h
. (49)

10

A time series of energy and potential enstrophy are plotted in Fig. 7. With hypervis-
cosity (simulations a, b) all simulations exhibit nearly identical conservation proper-
ties, suggesting that both the continuous and discontinuous hyperviscosity operators
(which are responsible for the loss of energy and potential enstrophy conservation)
act in a nearly identical manner over the course of the simulation. Without hypervis-15

cosity (simulations c, d) change in energy and potential enstrophy is much smaller.
Continuous elements show initiation of instability at approximately day 6, likely due to
high-wavenumber oscillations in the height field caused by nonlinear aliasing. On the
other hand, discontinuous elements instead show a slow decay of energy and potential
enstrophy driven by the weak diffusivity of the discontinuous penalization.20

6.3 Barotropic instability

The barotropic instability test case of Galewsky et al. (2004) consists of a zonal jet
with compact support at a latitude of 45◦, with a latitudinal profile roughly analogous to
a much stronger version of test case 3 of Williamson et al. (1992). A small height per-
turbation is added atop the jet which leads to the controlled formation of an instability25

in the flow. The relative vorticity of the flow field at day 6 can then be visually compared
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against a high-resolution numerically computed solution Galewsky et al. (2004); St-Cyr
et al. (2008).

Simulation results for this test case were computed at ne = 32 and np = 4 after 12
days of integration with hyperviscosity enabled. The time step used for these runs
was ∆t = 150 s for continuous elements, ∆t = 75 s for g2 discontinuous elements and5

∆t = 50 s for g1 discontinuous elements. Simulations are again compared against the
continuous element run (with HV) in Fig. 8, where the relative vorticity field ζ and
relative vorticity field difference ζ − ζc is plotted (where ζc is the height field given in
simulation a). Due to the presence of sharp frontal activity in this test case and the
strong resolution dependence of this problem (Ullrich et al., 2010), differences in ζ10

are of the same magnitude as the original field. In particular, the simulations without
hyperviscosity (simulations d, e, f) all show enhancement near wave fronts which is
not apparent in the simulations with hyperviscosity (simulation b, c). Although most
differences can be found near sharp fronts, there is also a clear enhancement in the
differences near 120E associated with a trailing instability. For continuous elements15

without hyperviscosity (simulation c), there is also apparent grid-scale noise which is
missing from the other simulations, suggesting that this method is under-diffused.

Normalized total energy and potential enstrophy are plotted for the barotropic insta-
bility in Fig. 9 for a 12 day integration with ne = 16 and np = 4. With hyperviscosity (a,
b) there are small but visible differences in the results associated with changes in the20

type of elements. Without hyperviscosity (simulations c, d) the simulation with contin-
uous elements exhibit instability around day 6, leading to rapid growth of energy and
potential enstrophy. On the other hand, with discontinuous elements there is a steady
loss of energy and potential enstrophy over time due to diffusivity from discontinuous
penalization. Prior to wave breaking (which occurs around day 4), energy and potential25

enstrophy loss are significant reduced compared to the simulations with hyperviscos-
ity. After wave breaking, energy and potential enstrophy loss are of the same order of
magnitude for simulations with and without hyperviscosity, associated with the fact that
diffusivity is enhanced near the barotropic fronts where discontinuities are large.
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7 Conclusions

Following Huynh (2007), a novel nodal finite element method for continuous and dis-
continuous elements has been constructed using a robust derivative operator and dis-
continuous penalization. The resulting methodology can be used for straightforward
discretization of partial differential equations in either conservative or non-conservative5

form. A hyperviscosity operator valid for both continuous and discontinuous elements
was also presented that would provide a mechanism for numerical stabilization and the
removal of grid-scale noise. Two versions with discontinuous elements were studied,
using either the g1 and g2 flux correction function for distribution of boundary fluxes
and penalty across nodal points. The resulting method was then applied to the 2-D10

shallow-water equations in cubed-sphere geometry and tested on a suite of test prob-
lems.

From the Williamson et al. (1992) test case suite, steady-state geostrophically bal-
anced flow and zonal flow over an isolated mountain were examined, in addition to
the barotropic instability test of Galewsky et al. (2004). The method was shown to be15

stable and accurate for both continuous and discontinuous elements, with fourth-order
convergence being verified for cubic basis functions. Discontinuous penalization was
shown to be necessary for stability and for maintaining the correct order of accuracy of
the discontinuous method. Overall the discontinuous elements required a smaller time
step than continuous elements, although all methods led to similar error norms when20

hyperviscosity was active. When hyperviscosity was deactivated, the discontinuous
method exhibited better error norms than the continuous approach and discontinuous
penalization was shown to be sufficient for stability of the method even for complex
flows. Nonetheless, differences between all three approaches appeared minor, and all
methods performed well for this suite of tests.25

The non-conservative discontinuous element formulation has been shown to be a po-
tential candidate for future atmospheric modeling. It has the advantage of requiring
fewer parallel communications than continuous methods, and exhibits stability even
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when hyperviscosity is not used for explicit stabilization. However, with the reduced
time step size it remains unclear whether the discontinuous formulation would be com-
putationally competitive with continuous element methods.

The method discussed in this paper has been implemented in the Tempest atmo-
spheric model, available from https://github.com/paullric/tempestmodel.5

Appendix A: Derivation of the viscosity operator

In this appendix the derivation of the discrete viscosity operator is provided for scalar
and vector hyperviscosity on a Riemannian manifold.

A1 Scalar viscosity

From the natural quadrature rule that arises from the nodal finite element formulation,10

the left-hand-side of Eq. (21) is discretized as∫ ∫
fφ(i ,j )dA =

∫ ∫
f φ̃(i )(α)φ̃(j )(β)dA = f(i ,j )wiwjJ∆α∆β, (A1)

and so, pointwise, the H operator is applied via

f(i ,j ) =
ν

wiwj∆α∆βJ(αi ,βj )

 ∮
∂Z

φ(i ,j )∇ψ ·dS−
∫ ∫
Z

∇φ(i ,j ) · ∇ψdA

 . (A2)15

The area integral term in Eq. (A2) is then computed:∫ ∫
∇φ(i ,j ) · ∇ψdA =

∫ ∫
∇pφ∇pψdA =

∫ ∫ ∂φ(i ,j )

∂α
∇αψ +

∂φ(i ,j )

∂β
∇βψdA,

= ∆α∆β
np−1∑
m=0

np−1∑
n=0

φ̃(j )

∂φ̃(i )

∂α
∇αψJwmwn|α=αm,β=βn
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+∆α∆β
np−1∑
m=0

np−1∑
n=0

φ̃(i )

∂φ̃(j )

∂β
∇βψJwmwn

∣∣
α=αm,β=βn

(A3)

= ∆α∆βwj

np−1∑
m=0

∂φ̃(i )

∂α
∇αψJwm|α=αm,β=βj

+∆α∆βwi

np−1∑
n=0

∂φ̃(j )

∂β
∇βψJwn

∣∣
α=αi ,β=βn

From Eqs. (A2), (A3), and (23) then follows. The boundary integral term in Eq. (A2)5

takes the form∮
∂Z

φ(i ,j )∇ψ ·dS =
∫

∂ZR

φ(i ,j )∇ψ ·dS+
∫

∂ZT

φ(i ,j )∇ψ ·dS+
∫

∂ZL

φ(i ,j )∇ψ ·dS

+
∫

∂ZB

φ(i ,j )∇ψ ·dS, (A4)

where R, T , L and B denote the right, top, left and bottom edges, respectively. The10

quantity dS = Nd` denotes the normal vector to the edge with magnitude equal to the
infinitesimal length element. Only the covariant components of the face normals need
to be known, at each edge given by

NRp =

(
1√
gαα

,0

)
, NTp =

(
0,

1√
gββ

)
,

NLp =

(
− 1√

gαα
,0

)
, NBp =

(
0,− 1√

gββ

)
, (A5)15
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The infinitesimal length element along each edge is given by the covariant metric,

d`R =
√
gββdβ, d`T =

√
gααdα, d`L =

√
gββdβ, d`B =

√
gααdα. (A6)

Then along the right edge, using the nodal discretization of the boundary integral,

∫
∂ZR

φ(i ,j )∇ψ ·dS = δi ,np−1

np−1∑
n=0

φ̃(j )(β)∇αψNRαwn
√
gββ∆β

∣∣∣
α=αnp−1,β=βn

5

= δi ,np−1wj∆β J∇αψ |α=αnp−1,β=βj
, (A7)

where we have used gββ = J2gαα. Repeating for all edges and using Eq. (A2) then
yields Eq. (24).

A2 Vector viscosity10

The area integral that appears on the left-hand-side of Eqs. (29) and (30) takes the
form∫ ∫
Z

f ·φ(α)
(i ,j )dA =

∫ ∫
Z

f αφ̃(i )(α)φ̃(j )(β)dA = f α(i ,j )wiwjJ∆α∆β, (A8)

∫ ∫
Z

f ·φ(β)
(i ,j )dA =

∫ ∫
Z

f βφ̃(i )(α)φ̃(j )(β)dA = f β(i ,j )wiwjJ∆α∆β. (A9)

15

A2.1 Discretization of the area integral

In nodal form, the divergence expands as

(∇ ·φ(α)
(i ,j )) =

1
J
∂
∂α

(
Jgααφ(i ,j )α

)
+

1
J
∂
∂β

(
Jgβαφ(i ,j )α

)
(A10)
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=
φ̃(j )(β)

J
∂
∂α

(
Jgααφ̃(i )(α)

)
+
φ̃(i )(α)

J
∂
∂β

(
Jgβαφ̃(j )(β)

)
, (A11)

and so∫ ∫
Z

(∇ ·φ(i ,j ))(∇ ·u)dA

= ∆α∆β
np−1∑
m=0

np−1∑
n=0

[
φ̃(j )(βn)

J
∂
∂α

(
Jgααφ̃(i )(α)

)
5

+
φ̃(i )(αm)

J
∂
∂β

(
Jgβαφ̃(j )(β)

)]
(∇ ·u)Jwmwn

= ∆α∆βwj

np−1∑
m=0

Jgαα
dφ̃(i )

dα
(∇ ·u)wm

∣∣∣∣∣
α=αm,β=βj

+∆α∆βwi

np−1∑
n=0

Jgβα
dφ̃(j )

dβ
(∇ ·u)wn

∣∣∣∣∣
α=αi ,β=βn

(A12)

Further, the radial component of the vorticity expands as10

(∇×φ(i ,j ))
r = −1

J

∂φ(i ,j )α

∂β
= −

φ̃(i )

J

dφ̃(j )

dβ
(A13)

and so∫ ∫
Z

(∇×φ(i ,j ))
r (∇×u)rdA
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= ∆α∆β
np−1∑
m=0

np−1∑
n=0

[
−
φ̃(i )(αm)

J

dφ̃(j )

dβ

]
(∇×u)rJwmwn

∣∣∣∣∣
α=αm,β=βn

= −∆α∆βwi
np−1∑
n=0

dφ̃(j )

dβ
(∇×u)rwn

∣∣∣∣∣
α=αi ,β=βn

(A14)

Combining Eqs. (A8), (A12) and (A14) then gives Eq. (32). An analogous procedure
for β leads to Eq. (33).5

A2.2 Discretization of the boundary integral

Using Eqs. (A5) and (A6) and
√
gββ = J

√
gαα, the contour integral in Eq. (29) along

the right edge becomes∫
∂ZR

(∇ ·u)φ(α)
(i ,j ) ·dS = δi ,np−1 (∇ ·u)gααJwj∆β

∣∣
α=αnp−1,β=βj

, (A15)

10

and along the top edge, also using
√
gαα = J

√
gββ,∫

∂ZT

(∇ ·u)φ(α)
(i ,j ) ·dS = δj ,np−1 (∇ ·u)gαβJwi∆α

∣∣
α=αi ,β=βnp−1

(A16)

Repeating for all edges and using Eq. (A8), the complete boundary integral for di-
vergence damping then leads to the divergence damping contribution to Eq. (34). An15

analogous procedure for test function φ
(β)
(i ,j ) leads to Eq. (35).

For vorticity damping, along the right edge Eq. (30) reads∫
∂ZR

(∇×u)×φ ·dS = δi ,np−1 ε
βrα(∇×u)rφ(i ,j )αNβwj

√
gββ∆β

∣∣
α=αnp−1,β=βj

= 0.
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and along the top edge,∫
∂ZT

(∇×u)×φ ·dS = δj ,np−1 ε
βrα(∇×u)rφ(i ,j )αNβwi

√
gαα∆α

∣∣∣
α=αi ,β=βnp−1

,

= δj ,np−1(∇×u)rwi∆α.
5

Repeating for all edges and using Eq. (A8) then leads to the vorticity damping constri-
bution to Eq. (34). An analogous procedure for test function φ

(β)
(i ,j ) leads to Eq. (35).
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Fig. 1. A 3D view of the cubed-sphere grid shown here with ne = 16. Cubed sphere faces are individually
shaded.
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Figure 1. A 3-D view of the cubed-sphere grid shown here with ne = 16. Cubed sphere faces
are individually shaded.
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Fig. 2. A depiction of the nodal grid for a reference element on GLL nodes for np = 4. Boundary nodes,
which are connected to neighboring elements, are shaded.
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Figure 2. A depiction of the nodal grid for a reference element on GLL nodes for np = 4. Bound-
ary nodes, which are connected to neighboring elements, are shaded.
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Fig. 3. L2 errors in Williamson et al. (1992) Test Case 2, steady-state geostrophically balanced flow,
for ne = 4 and np = 4 after a 5 day integration period. Contour spacing for plot (a) is 1 meter. Contour
spacing for all other plots is 0.5 meter. The zero line is enhanced. Long dashed lines show the cubed-
sphere grid.
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Figure 3. L2 errors in Williamson et al. (1992) Test Case 2, steady-state geostrophically bal-
anced flow, for ne = 4 and np = 4 after a 5 day integration period. Contour spacing for plot (a) is
1 m. Contour spacing for all other plots is 0.5 m. The zero line is enhanced. Long dashed lines
show the cubed-sphere grid.
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Fig. 4.L2 error time series for geostrophically balanced flow on the cubed-sphere for ne = 16 and np = 4
over a 5 day integration period for all continuous and discontinuous schemes.
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Figure 4. L2 error time series for geostrophically balanced flow on the cubed-sphere for ne = 16
and np = 4 over a 5 day integration period for all continuous and discontinuous schemes.
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Fig. 5.L2 errors for geostrophically balanced flow on the cubed-sphere at various resolutions with np = 4
over a 5 day integration period. In (a) errors due to hyperviscosity dominate and so all simulations have
approximately equal error leading to coincident lines. In (b) unstable simulations have been removed.
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Figure 5. L2 errors for geostrophically balanced flow on the cubed-sphere at various resolutions
with np = 4 over a 5 day integration period. In (a) errors due to hyperviscosity dominate and
so all simulations have approximately equal error leading to coincident lines. In (b) unstable
simulations have been removed.
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Fig. 6. Height field with ne = 16 and np = 4 at day 15 for zonal flow over an isolated mountain with
(a) continuous elements and hyperviscosity (reference solution). Height difference plot from reference
solution with ne = 16 at day 15 for (b) discontinuous g2 elements with hyperviscosity, (c) discontinuous
g1 elements with hyperviscosity, (d) continuous elements without hyperviscosity, (e) discontinuous g2
elements without hyperviscosity and (f) discontinuous g1 elements without hyperviscosity. The time
step used for these runs was (a,d) ∆t= 480 s, (b,e) ∆t= 240 s and (c,f) ∆t= 120 s. Discontinuous
penalization was used for both discontinuous schemes. Contour spacing is 1 m in all difference plots
with the zero line removed. Long dashed lines show the cubed-sphere grid.
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Figure 6. Height field with ne = 16 and np = 4 at day 15 for zonal flow over an isolated moun-
tain with (a) continuous elements and hyperviscosity (reference solution). Height difference plot
from reference solution with ne = 16 at day 15 for (b) discontinuous g2 elements with hyper-
viscosity, (c) discontinuous g1 elements with hyperviscosity, (d) continuous elements without
hyperviscosity, (e) discontinuous g2 elements without hyperviscosity and (f) discontinuous g1
elements without hyperviscosity. The time step used for these runs was (a, d) ∆t = 480 s, (b, e)
∆t = 240 s and (c, f) ∆t = 120 s. Discontinuous penalization was used for both discontinuous
schemes. Contour spacing is 1 m in all difference plots with the zero line removed. Long dashed
lines show the cubed-sphere grid.
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Fig. 7. Normalized total energy and potential enstrophy change for the zonal flow over an isolated moun-
tain test with ne = 16 and np = 4 over a 15 day simulation. In (a) all simulations show roughly equivalent
energy and enstrophy loss and so all lines are coincident. In (c) and (d) the simulation with continuous
elements is beginning to experience instability, leading to total energy and enstrophy growth after ap-
proximately 6 days simulation time.
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Figure 7. Normalized total energy and potential enstrophy change for the zonal flow over an
isolated mountain test with ne = 16 and np = 4 over a 15 day simulation. In (a) all simulations
show roughly equivalent energy and enstrophy loss and so all lines are coincident. In (c) and
(d) the simulation with continuous elements is beginning to experience instability, leading to
total energy and enstrophy growth after approximately 6 days simulation time.
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Fig. 8. Relative vorticity field with ne = 32 and np = 4 at day 6 for the barotropic instability test with
(a) continuous elements and hyperviscosity (reference solution). Relative vorticity difference plot from
reference solution with ne = 16 at day 6 for (b) discontinuous g2 elements with hyperviscosity, (c) dis-
continuous g1 elements with hyperviscosity, (d) continuous elements without hyperviscosity, (e) discon-
tinuous g2 elements without hyperviscosity and (f) discontinuous g1 elements without hyperviscosity.
The time step used for these runs was (a,d) ∆t= 150 s, (b,e) ∆t= 75 s and (c,f) ∆t= 50 s. Discontinu-
ous penalization was used for both discontinuous schemes. Contour spacing in all plots is 2× 10−5 s−1

with the zero line removed. Long dashed lines show the cubed-sphere grid.
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Figure 8. Relative vorticity field with ne = 32 and np = 4 at day 6 for the barotropic instability
test with (a) continuous elements and hyperviscosity (reference solution). Relative vorticity dif-
ference plot from reference solution with ne = 16 at day 6 for (b) discontinuous g2 elements with
hyperviscosity, (c) discontinuous g1 elements with hyperviscosity, (d) continuous elements with-
out hyperviscosity, (e) discontinuous g2 elements without hyperviscosity and (f) discontinuous
g1 elements without hyperviscosity. The time step used for these runs was (a, d) ∆t = 150 s, (b,
e) ∆t = 75 s and (c, f) ∆t = 50 s. Discontinuous penalization was used for both discontinuous
schemes. Contour spacing in all plots is 2×10−5 s−1 with the zero line removed. Long dashed
lines show the cubed-sphere grid.
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Fig. 9. Normalized total energy and enstrophy change for the barotropic instability test with ne = 16 and
np = 4 over a 12 day simulation. In (c) and (d) the continuous element simulation fails after approxi-
mately 6 days, leading to unbounded growth in energy and enstrophy. The time step used for these runs
was (a,d) ∆t= 300 s, (b,e) ∆t= 150 s and (c,f) ∆t= 75 s. Discontinuous penalization was used for
both discontinuous schemes.
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Figure 9. Normalized total energy and enstrophy change for the barotropic instability test with
ne = 16 and np = 4 over a 12 day simulation. In (c) and (d) the continuous element simulation
fails after approximately 6 days, leading to unbounded growth in energy and enstrophy. The
time step used for these runs was (a, d) ∆t = 300 s, (b, e) ∆t = 150 s and (c, f) ∆t = 75 s.
Discontinuous penalization was used for both discontinuous schemes.
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